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ABSTRACT

This report presents a comprehensive review of research into
students’ depictions of quantum physics. It is based on
https://gtbit-it2-aoqp.firebaseapp.com/ which contains

knowledgeful insights on quantum physics and some of its
important principles. In particular, this report highlights the need
for investigations into what interpretations of quantum
mechanics are employed in teaching as inappropriate depictions
of guantum mechanics appears to be a common theme in
students’. It also contains a software which shows a graph
between wave function psi W with distance.

This report discusses the need and importance of quantum
physics and also gives a brief context of what quantum physics is.
It then proceeds to tell us about some of the most important
topics of guantum physics in an as easy manner as possible.
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1.

Introduction

1.1. Introduction to the problem

Why do we choose quantum physics as a topic? In short, it is because
guantum physics is an extremely important and influential physics
theory, and because teaching and learning quantum physics is a
challenging task for both lecturers and students. In this report we will
elaborate on this, in order to make the importance of quantum physics
education research clear. Although we are aware that each researcher
probably considers her or his own research field as particularly
important, we cannot help feeling that we are particularly favoured
our choice of research field, since the necessity of quantum physics
education research is dramatically obvious.

1.2. The importance of quantum physics
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| believe that most physicists if asked by a non-physicist whether
guantum physics is important, would start to smile. Some would do
this out of sheer politeness. A few would possibly do it while thinking
“how can anyone ask such a stupid question?” But most, | believe,
would do it because they feel that they finally have a physics question
that they can answer in a way that laypeople would understand.

To a physicist, the importance of quantum physics is self-evident.
She, or he, knows that quantum physics is the theory to use when it
comes to microscopic phenomena: no other theory has been able to
describe and predict, for example, atomic behaviour nearly as
accurately as quantum physics has been able to. A physicist would also
know that microscopic phenomena are extremely important when it
comes to understanding matter at a larger scale. For example, by
understanding the atomic structure you can explain why leaves are
green, why certain plastics bend when others break, why metals
conduct electricity, why it takes so much energy to heat up water in
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relation to equal amounts of many other substances, and why
chemical reactions take place the way they do.

A physicist might also tell you that quantum physics is also a
remarkable predictor. In fact, quantum physics has produced one of
the most detailed predictions verified so far, with the so-called fine
structure constant, describing the strength of electromagnetic
interaction in the cosmos. The fine structure constant has so far been
measured to a precision of twelve digits (Gabrielse et al. 2006). For
comparison, a twelve digit precision can be exemplified by measuring
the circumference of Earth with a precision of a hair width (or a
twentieth of a millimetre). Visit https://gtbit-it2-
aoqp.firebaseapp.com/ to know about the biggest contributors of
QUANTUM PHYSICS.

A physicist will probably also start talking about string theory,
physics’ best attempt so far for a grand unified theory — a theory of
everything. It so happens that string theory is anchored in quantum
physics, along with the general theory of relativity. It is likely that
some physicists would also go on to talk about quarks, radiation, anti-
particles and other aspects of quantum physics, but at this point the
listener is likely to get tired of examples from physics: OK, | get the
point — quantum physics is an important theory in physics.

Influence of quantum physics outside physics

However, | am not completely satisfied with the conclusion that
guantum physics is important in physics. Yes, quantum physics is an
extremely important theory in physics, but the importance of
guantum physics goes well beyond physics theories. To make this
clear, we will also ask a few other imaginary representatives from
other professions.

An engineer familiar with quantum physics would tell us that if it
was not for quantum physics, we would not be able to make
semiconductors in the way we do today. This means, for example, that
we would not have cell phones, LCD displays, computers, light
emitting diodes, and basically all other electronic equipment. A
medical doctor would add that we, among other things, would not
have magnetic resonance imaging; a powerful tool used for imaging
the inside of our body. Also, the medical doctor would agree with the
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molecular biologist that quantum physics has made it possible to
simulate how medical substances interact with the proteins of our
body — an efficient and safe first step in testing new medical
substances.

If we would go on to ask a science fiction writer about quantum
physics, she or he would probably get excited. The writer would talk
about quantum computers that are immensely more powerful than
our ordinary computers; about quantum teleportation, creating an
exact replica of whatever is teleported and at the same time
destroying the original; or about quantum cryptography, a way of
transmitting information without even a theoretical possibility of
eavesdropping. This may seem a bit far-fetched, and indeed, quantum
computers and quantum teleportation still have a long way to go
before they can leave the laboratory environment. But quantum
cryptography is actually commercially available, even if the range of
communication is limited.

Finally, we turn to a philosopher, to ask about the significance of
guantum physics. Assuming that the philosopher knows quantum
physics well —and there are definitely some who do — she or he would
tell us that quantum physics has had a profound impact on what we
mean by space and time, and possibly more importantly, cause and
effect. Quantum physics has also shown that our world cannot be
described by a so-called local realistic theory, which is basically that
every part of the world is in itself a determined reality that can be
observed. Instead, the world must either be described by a non-
realistic theory — that the world is not determined before we observe
it; or a non-local realistic theory — basically saying that what we
perceive as two different places in space are in some aspects actually
the same place (or are in direct contact).

1.3. Introduction to quantum physics
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This section briefly introduces one way of looking at quantum physics.
The description follows the so-called modal interpretation of quantum
physics, although this will not be particularly important at this
introductory level.
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It is, however, important to note that this is one way of looking at
quantum physics. | have chosen this view because | believe it to be
relevant for a non-physicist reader. It introduces quantum mechanical
concepts in a way that (hopefully) can be understood without prior
knowledge of quantum physics or sophisticated mathematics.

Some limitations of this particular view are discussed in the end of
this section.

1.3.1. The context of quantum physics

Before introducing any technical aspects of quantum physics,
it is important to know the contexts where quantum physics is
used.

Although quantum physics can be used to describe the
motion of billiard balls and pressure of gases, the main realm
of quantum physics is the atomic level. At sizes visible to our
eyes, the differences between quantum physics and classical
physics is so small that, in almost all cases, quantum physics
provides but an insignificant correction to classical physics —
just as the theory of relativity is irrelevant when dealing with
velocities much smaller than the speed of light.

However, quantum physics should not be mistaken as a
theory that only applies to nano-scale environments, which
becomes “correct” only when sizes are sufficiently small. You
could rather say that in Nano-scale environments, classical
physics is no longer a useful approximation of quantum
physics. Still, there are examples of quantum mechanical
phenomena visible in our everyday environment, such as
diffraction patterns of light.
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1.3.2. States, eigenstates and probabilities

One absolutely crucial aspect of quantum physics is that
particles may have undetermined values for properties such as
energy, velocity and angular momentum (rotation). This means
that, for example, an electron may have several values of its
potential energy. However, in the event of measuring the
electrons potential energy, the potential energy will change into
one of the possible values. This is what is often referred to as
the “collapse of the wave function”, and is an important
example, that, according to quantum physics, measurement is
not something passive, but an active process that may affect a
particle.

An electron which only has one possible value for potential
energy — such as an electron whose potential energy has just
been measured —is said to be in an eigenstate of potential
energy. An electron that is not in an eigenstate of potential
energy can always be written as a sum of eigenstates, for
example W=0.1E1+0.5E2+0.2E3 +... (where W represents
the non-eigenstate of the electron, and Ei represents the
different eigenstates of potential energy).

The coefficients in front of the different eigenstates may be
used for calculating the probabilities for the specific potential
energy associated to that eigenstate. This is done by squaring
the coefficient (or actually by taking the absolute value of the
square, since the coefficients may be complex-valued). Thus, if
we were to measure the potential energy of the electron above,
we have a 0.01 probability of obtaining the potential energy
associated to the eigenstate E1 and a 0.25 chance of obtaining
the E2 potential energy.

In the example above we are using potential energy, but the
same reasoning holds for any measurable property of a particle.
Thus, the state of an electron may be described as a sum of
eigenstates of potential energy, but also another set of
eigenstates of velocity, angular momentum, and so on.
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1.3.3. Spatial distribution

In particular, the reasoning in the section above may be applied
to the property position, which is a measurable property of a
particle. This means that a particle does not, in general, have a
definite position in space. By measuring the position, however,
the particle is forced into assuming one of the possible
positions.

That a particle does not have a well-defined position
contradicts how we normally conceptualize particles — as a point
in space, with mass but no spatial size. It is tempting to visualize
the quantum mechanical particle as a localised point-particle,
which we do not know where it is, but that still has a pre-
determined position even before we measure it. However, it
turns out that this view is counterproductive when trying to
understand quantum physics. Properties are not determined
until they are measured, and there have actually been quite a
number of experiments proving this.

As with other properties, the state of a particle may be
described as a sum of eigenstates of position. Since position
most often is a continuous variable, the coefficients are not
described through discrete sets of numbers, but through a
function describing a distribution. For every possible position,
the function has a particular value. Taking the absolute value
squared will yield the probability density of detecting the
particle at that particular point in space.

This function, describing a distribution in space, is usually
called the wave function of a particle, and is commonly denoted
W(x, t), where x denotes a position (in one or more dimensions),
and t denotes time. For example, W (0, t) would give us
information of the probability of detecting a particle at the
origin, at a certain time t0.

The wave function is a central part of quantum physics.
Often, especially in practical situations, the probability
distribution (being the absolute value of the wave function
squared) is more useful than the wave function itself, not least
since the probability distribution may be empirically tested
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through repeated measurements. Still, it should be noted that
the spatial expansion of a particle’s state is only one of several
possible ways of describing the state.

1.3.4. Heisenberg Uncertainty Principle

Heisenberg uncertainty principle is perhaps the best known
result of the wave particle duality, i.e., the concept of waves or
wave packet associated with a moving particle. According to
Heisenberg uncertainty principle it is impossible to determine
simultaneously the exact position and momentum (or velocity)
of a small moving particle like electron. Visit https://gtbit-it2-
aoqp.firebaseapp.com/ and look for Heisenberg Uncertainty
Principle under CONCEPT section for more information.

Heisenberg’s Uncertainty Principle

h h
Aag B B3 e e o
’xp—zm 2

uncertainty
in position
The more accurately you know the position (i.e., the smaller Ax is),

the less accurately you know the momentum (i.e., the larger Ap is);
and vice versa

1.3.4.1. Explaining Heisenberg Uncertainty Principle
with an example

Electromagnetic radiations and microscopic matter
waves exhibit a dual nature of mass/ momentum and
wave character. Position and velocity/momentum of
macroscopic matter waves can be determined
accurately, simultaneously. For example, the location
and speed of a moving car can be determined at the
same time, with minimum error. But, in microscopic
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particles, it will not be possible to fix the position and
measure the velocity/momentum of the particle
simultaneously.

An electron in an atom has a mass of 9.91 x 10-3Kg.
Naked eyes will not see such small particles. A
powerful light may collide with the electron and
illuminate it. lllumination helps in identifying and
measuring the position of the electron.

The collision of the powerful light source, while
helping in identification increases the momentum of
the electron and makes it move away from the initial
position. Thus, when fixing the position, the velocity
/momentum of the particle would have changed from
the original value. Hence, when the position is exact
the error occurs in the measurement of velocity or
momentum. In the same way, the measurement of
momentum accurately will change the
position.Hence, at any point in time, either position
or momentum can only be measured accurately.

Simultaneous measurement of both of them will have
an error in both position and momentum. Heisenberg
guantified the error in the measurement of both
position and momentum at the same time.

1.3.5. The Schrodinger equation
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The Schrdédinger equation is a linear partial differential equation
that governs the wave function of quantum mechanical system
via the wave function .The trajectory, the positioning, and the
energy of these systems can be retrieved by solving the
Schrodinger equation. All of the information for a subatomic
particle is encoded within a wave function. The wave
function will satisty and can be solved by using the
Schrodinger equation. The Schrodinger equation is one of the
fundamental axioms that are introduced in undergraduate
physics. It is also increasingly common to find the
Schrodinger equation being introduced within the electrical
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engineering syllabus in universities as it is applicable to
semiconductors. Visit https://gtbit-it2-aoqgp.firebaseapp.com/
and look for The Schrodinger equation under CONCEPT section
for more information.

The Schrédinger equation describes how a quantum mechanical
system changes with time:

rate of
Lha nge guantum
square root of wavefunction

zh W= HY
|l:u f.ff &r Hamlillunian
operator

wn:h

respect
to time

Figure 1. The Schrédinger equation. 0 represents a derivative and W
represents the wave function. i is the imaginary unit (where i2 =-1) and h is
Planck’s constant (where the bar denotes that it is divided by 2r).

The H with hat is an operator, acting on the wave function. The
left side of this equation is the time derivative of the wave
function, describing the rate of change in the wave function as
time changes. The right side of the equation consists of a
complex factor, and then an operator corresponding to the total
energy of the particle. The operator, called the Hamilton
operator, involves kinetic energy, potential energy, and
sometimes more terms relating, for example, to attraction or
repulsion between particles. Thus, the Hamilton operator
depends on the environment of a particle, and so does the time
development of the particle.

A full explanation of the Schrédinger equation is beyond the
scope of this brief introduction, but it should still be noted that
in the case of a particle in an eigenstate of total energy, the time
evolution of the system becomes a trivial problem. Because of
this, it is often very informative to analyse the eigenstates of the
total energy. Indeed, many very important quantum mechanical
applications deal solely with finding or approximating these
eigenstates.
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Drawing a graph between w (wave function) and x .Probability and x. for
different values of n.

There is an exe file provided in the website. Download it and open and enter
the principal quantum number to get the graph.

# Schrodinger Wave Graph Generator — O >
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1.3.5.1. Time Independent Schrédinger equation

Schrodinger’s time-independent wave equation describes the standing waves.
Sometimes the potential energy of the particle does not depend upon time,
and the potential energy is only the function of position. In such cases, the
behaviour of the particle is expressed in terms of Schrodinger’s time-
independent wave equation.

Consider a system of stationary waves associated with a moving particle. The waves are said to be stationary
w.r.t the particle. If the position coordinates of the particle are (x, v, z) and W be the peniodic displacement
for the matter waves at any mstant of time 7, then we can represent the motion of the wave by a differantial
equation as follows.

r'fl,u'-l_ﬂzq:i_‘_r]:w: 1 'y i)
i & & war
where & 15 the velocity of wave associated with the particle. The solution of Eq. (1) gives  as a peniodic
displacement in terms of time, 1.2,

Wx, ¥, 2, 1) = Wyix, y, Z)e™ ()

where i, 1s the amplitude of the particle wave at the point (x, v, z) which is independent of time (f). It is a
function of (x, ¥ 2). 1.€., the position r and not of time 1, Here.

r=xi+ 3+ zk (1ii)
Eq. (1) may be expressed as

e, t) = ylrie ™™
Differentiating Eq. (1v) twice with respect to 1, we get

(1v)

iy 3 -
[ f - —I'.I::l-llll'l:l{f]f (LY
L.
o 3 (v)
— m-
or Y ¥
i . A :
Substituting the value of ',|_" from this equation in Eq. (1), we get
ai”

Fy dy gy w
A L ] i
= Pl | S - V)

where @ = 2av=2mu/A) [as u= Av]
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Also from the deBroglie wave concept

=t

mv

Using this relation in Eq. (ix) gives

4t m*y? (x)
Vi + —a V= 0
Here it can be noted that the velocity of particle v has been introduced in the wave equation.
If £ and FV are respectively the total energy and potential energy of the particle then its kinetic energy is

given by
L
—mv =E=F
2

m*vt = 2m(E = V) (xi)

The use of Eq. (xi) in Eq. (x) gives rise to
87’ m
2

Vi + (E-V =0

or Vi + E—T{F =10 (xi1)
ha.

This 1s the time independent Schridinger equation, where the quantity w is known as wave function.
For a freely moving or free particle = (. Therefore, Eq. (xii) becomes

2mE

2

Vi +

y=0 (xiii)

This is called time independent Schridinger equation for a free particle.

1.3.5.2 Time Dependent Schrodinger equation

In vrder W oblam a lime dependent Schridinger equation, we elimimate the lwial energy E [rom Ume
independent Schrodinger equation. For this we differentiate Eq. (1v) w.rt. 7 and obtain

‘_;—'r = =i, (r)e

= iy (r)e

= =2mviy == 2mi Ey-_E ® ! W
- TR
N dy _Ey
ot il
dy .
or Fy=ih— Xiv
v dt (xw)

12| Page



Substituting the value of Ey from Eq. (x1v) in Eq. (xu1), we have

Vi + gm{mr?]_w - i»’w]z 0

n df

) 2m| . dy
- Vi =-—|ih -y
! Y hfbeﬂ: w}
(xv)
- ay
or -V 4V ly=ih—-
[ Zm? ]V i ar

2m
called Hamilitonian aperator and 1s represented by H. If we see the RHS of Eq. (xv) and keep in mind

;
This equation 1s known as Schrodinger s time dependent wave equation. The operator (_—'-71 + Iz'] 15

Cg. (xiv), we notice that the operator ;h_J— operating on ¥ gives E. Hence, Schrodinger equation can be
written in operator form, as below ol

Hy=Ey

1.3.6. Applications of Schrodinger equation

In classical physics, based on Newton’s second law of motion (F=ma)
we make a mathematical prediction of the path, a given system will
take following set of known initial conditions. The analogue of
Newton’s law is Schrodinger equation in quantum physics for a
quantum system such as atoms, molecules and subatomic particles.
The subatomic particles may be free, bound or localized. Schrodinger
equation describes the time evolution of the system’s wave function.

Schrddinger’s equation is extremely useful for investigating various
guantum mechanical problems. With the help of this equation and
boundary conditions, the expression for the wave function is
obtained. Then the probability of finding the particle is calculated by
using the wave function. In the following subsections, we discuss
different quantum mechanical problems, viz. particle in a box, one-
dimensional harmonic oscillator, step potential and step barrier.
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1.3.6.1. Particle in a box (Infinite Potential Well)

The simplest quantum mechanical problem is that of a particle trapped in a box with infinitely hard walls. Infinitely

hard walls means the particle does not loose energy when it collides with such walls, 1.e., its total energy remains
constant. A physical cxample of this problem could be a molecule which 1s strictly confined in a box.

Let us consider a particle restriced to move along the x-axis between x=0andx=L, .
by ideally reflecting, infinitely high walls of the infinite potential well, as shown in

Fig. 16.2. Suppose that the potential energy I of the particle is zero inside the box, but

rises to infinity outside, that 1s,

F=0 for 0=x=L
V=co for x<0 and x>L Ficure 1

0 [ X

In such a case, the particle is said to be moving in an infinitely deep potential well. In order to evaluate the wave
function w in the potential well, Schoredinger equation for the particle within the well (V= 0) is written as

ErmE 5

we put =k

in the above equation for getting

2

a9’ )
%-F .’f_lrﬁl"= 0 (ii)

The general solution of this differential equation is
yix) =4 sin kx + B cos kx {111)
where 4 and B are constants.

Applying the boundary condition yAx) = 0 at x = 0, which means the probability of finding particle at the wall
x =015 Zero, we obtain

Asin(0)+Bcos{(0)=10 = B=10

Again, we have yix) =0atx =L, then

Asmkl +BcoskL=10 = Asinkl =10
The above equation is satisfied when
kL =nm
HT
or k=— wheren=1,2,3, ...
L
2_12
ar k= n jr (iv)
La.
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or EE v)
or in general we can write Eq. (v) as
E - nh'
" e wheren=1,2,3, ...

Thus, it can be concluded that in an infinite potential well the particle cannot have
an arbitrary energy, but can take only certain discrete energy values corresponding E,
to n=1. 2. 3. .... These are called the eigen values of the particle in the well and
constitutes the energy levels of the system. The integer n corresponding to the energy
level E, is called its quantum number, as shown in Fig. 16.3.

We can also calculate the momentum p of the particle or the eigen values of the
momentum, as follows,

Since k:z—ﬂzz—zﬁ
hip h
nmh

=hk=—
p L

The wave function (or eigen function) is given by Eq. (iii) along with the use of expression for k.

T
W, (x)= Asinjl—x

To find the value of 4, we use the normalisation condition.

[ 1y, (0 de=1

—

As mentioned earlier, the above expression simply says that the probability of finding the particle is 1. In the
present case, the particle 1s within the box 1.e., between () < x < L. So the normahsation condition becomes

L
T
AZJsinluirzl
)

L 2
AZ(—]=1 or A:F
2 L

The normalised eigen wave function of the particle is, therefore, given by

W lx)= Esinh‘ﬂlJr
" L L
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1.3.6.2. One Dimensional Harmonic Oscillator

A physical example of this quantum mechanical problem can be thought as an atom of vibrating diatomic
molecule. In general, a particle undergoing simple harmonic motion in one dimension is called one
dimensional harmonic oscillator. The potential and total energy of such a system is shown in Fig. where
the probability density is also shown. In such a motion, the restoring force F is proportional to the particle’s
displacement x from the equilibrium position, i.e.,

F=—kx (1)
where £ is force constant. The potential energy V can be written as

1, >
V=—-k
2

1, 5.
Then, the Schrodinger’s equation for the oscillator with V' = Sk\'“ IS

dzw 2m

1 ,] S .
+ E—-—k* w=0 '
dx? hz[ 2 v AW
, , : ! P \YY
h 8sz=aand[47zmk » X

1/2
Putting h=—, = = in the above
g > ] B

2

equation, we obtain

dzlll 2 2 o5
~+(a-pBx)y=0 (i)
r B x )y

Now we introduce a dimension less independent variable as E= JEX . Thus Eq. (ii) becomes.

ﬁ‘ﬂ—"’+[a—ﬁlﬁ]w=0

d&’ B
d*y [a zz]
—+| ==& |y -0 (111)
d&” | B

The solution of this equation is
'||[|f = CUE_'SEQ [1\.-]
where U/ is a function of £ Then Eq. (iii) takes the form

d*U dU [a
— 2 —+{—-1}U=ﬂ

g Tds | p
a . . & & - . & - .
If we replace E =1 by 2n, this equation becomes Hermite differential equation. Then function U(£) may be

replaced with Hermite polynomual H. So, we get
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KT
ds™ T dg

+2nH =0

Thus, the solution of Eq. (111) 15 obtained by replacing U/ by Hermute polynomial / in Eq. (1v). Hence, we get

w=CHe™ "
In general, w, (E)=CH, [E}e'ﬁz’lz, where n=10, 1, 2....

Eigen values of energy

Eigen Values of Energy
since “_ l=2n

8T mE

o
= —=2n+l = a=(2n+1)f = =(2n+1)

This restriction gives a corresponding restriction on E, Le.,

1y i |k
E=[n+—]—J:
22\ m

I |k
But —,|— =V 1s the frequency of oscillations. Hence, the energy can be written in terms of v as

2o \m

I (n + l]Jin-'
2

Thus, 1n general, the oscillator has finite, unambiguous and continuous
solutions at values of E given by

E":{n+l]hv ™
2

Following conclusions can be drawn from equation (v)
The particle executing simple harmonic motion can have only

(1) discrete energy levels that are equidistant and are separated by
hv, as shown in Fig. 16.8

(11) The energy levels are non-degenerate.

1
(m) For n=10, E, =Efw. It means the mimmum energy 1s not
Zero.
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Werner Karl Heisenberg

Werner Karl Heisenberg (Wiirzburg, Kingdom of Bavaria, German Empire; 5 December 1901 — Munich, Bavaria, Germany; 1 February 1976) was a
German theoretical physicist and one of the key pioneers of quantum mechanics. He published his work in 1925 in a breakthrough paper

Pauli

QUANTUM PHYSICS is simply the study of matter and energy at the most fundamental level. It aims to uncover the properties and behaviors of the
very building blocks of nature. While many quantum experiments examine very small objects, such as electrons and photons, quantum
phenomena are all around us, acting on every scale.

Quantum mechanics, science dealing with the behaviour of matter and light on the atomic and subatomicscale. It attempts to describe and account for the properties of molecules and
atoms and their constituents—electrons, protons, neutrons, and other more esoteric particles such as quarks and gluons. These properties include the interactions of the particles with one
another and with electromagnetic radiation (i.e., light, X-rays, and gamma rays). The behaviour of matter and radiation on the atomic scale often seems peculiar, and the consequences of
quantum theory are accordingly difficult to understand and to believe. Its concepts frequently conflict with common-sense notions derived from observations of the everyday world. There is
no reason, however, why the behaviour of the atomic world should conform to that of the familiar, large-scale world. It is important to realize that quantum mechanics is a branch of physics
and that the business of physics is to describe and account for the way the world—on both the large and the small scale—actually is and not how one imagines it or would like it to be.

(=]

What Is Quantum Mechanics Explained
Copy link

O1LIANTUM MECHANICS

Watch on (8 Youlube
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Schrodinger Equations

De-Broglie hypothesis
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Heisenberg’s uncertainty principle states that it is The Schrédinger equation is a linear partial differential

impossible to measure or calculate exactly, both the equation that governs the wave function of a quantum-

position and the momentum of an object. This principle ey SV vy

is based on the wave-particle duality of matter. A mechanics, and its discovery was a significant landmark
in the development of the subject.

Matter waves are a central part of the theory of
quantum mechanics, being an example of wave—particle
duality.For example, a beam of electrons can be
diffracted just like a beam of light or a water wave

More about Heisenberg

More about De Broglie
9 More about Schrodinger

More about the hypothesis More about the uncertainity
More about the Equations

Schrodinger

Probability density: n = 2

Probability density: n = 2
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Quantum Laser

Quantum well lasers have attracted a great deal of attention by their many.
A Uheria e RDCH S lowe MRS E NS Fan iy o SHARE et R R
high rate and bility etc.

More about Quantum Las:

o 29 - Quantum Physics - The laser (=}
Copy link
LASER

Wwatch on & Youlube

Quantum Flash Drives

.-

Many non-volatile memories (including ‘ypﬁ of Flash memory) use floating gate
transistors like this one. Like many t has three i

the source, the drain and the control gate, In & normal (non-floating) transistor
applying a voltage on the gate will create a channel between the source and the
drain that allows current to flow between the source and drain.

More about Quantum memory.

Brief mechanics of a Pendrive
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Global Positioning System

A special type of and 8
- can be systems.
Such a system may enable location tracking without the aid of GPS satellites.

More about GPS

FwW "GPS WOR|

Watch on &8 YouTube

Quantum tunnelling, also known as s) is a

Quantum Tunneling
P

/’ Quantum Tunnelling \
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More about Quantum Tunneling
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Magnetic Resonance

Also called magnetic resonance imaging, NMRI, and nuclear magnetic resonance imaging. Enlarge. Magnetic resonance
imaging (MRI) of the abdomen. The patient lies on a table that slides into the MRI machine, which takes pictures of the inside
of the body. The pad on the patient's abdomen helps make the pictures clearer.

How Does an MRI Scan Work? = . o

Watch later ~ Share

Watch on 8 YouTube
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Quantum computing is a rapidly-emerging technology that harnesses the laws of quantum mechanics to solve problems too

complex for classical computers. Today, IBM Quantum makes real quantum hardware -- a tool scientists only began to imagine
three decades ago -- available to thousands of developers.

Speed of Calculation

Quantum computing is a new generation of technology that involves a type of computer 158 million times faster than the most sophisticated supercomputer we have in the world

today. It is a device so powerful that it could do in four minutes what it would take a traditional supercomputer 10,000 years to accomplish.

Power Consumption

Changed Binary calculation

Quantum Dots

Vesmgg st e [ -

Quantum dots are semiconductor particles a few nanometres in size, having optical and
electronic properties that differ from larger particles due to quantum mechanics. They
are a central topic in nanotechnology.

More about Quantum Dots

Qubits

0

nan upn
0"or 0"and
State State
Classical Computers  Quantum Computers
(digital bits) (quantum bits)

In quantum computing, a qubit or quantum bit is a basic unit of quantum information—
the quantum version of the classic binary bit physically realized with a two-state device.
A qubit is a two-state quantum-mechanical system, one of the simplest quantum
systems displaying the peculiarity of quantum mechanics.

More about Qubits




To get the code you can visit:

https://github.com/KartiklJoshiUK/PhysicsProjec
tAOQP.git
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